Як застосовувати теорему Піфагора: 12 кроків

Теорема Піфагора пов'язує три сторони прямокутного трикутника однією формулою, якою користуються досі. Теорема свідчить, що в прямокутному трикутнику сума квадратів катетів дорівнює квадрату гіпотенузи:A2 + b2 = c2, де a і b — катети трикутника (сторони, що перетинаються під прямим кутом), с — гіпотенуза трикутника. Теорема Піфагора застосовна в багатьох випадках, наприклад, за допомогою цієї теореми легко знайти відстань між двома точками на координатній площині.

Метод1 З 2:
Знаходження сторін прямокутного трикутника

  1. Переконайтеся, що даний Вам трикутник є прямокутним, так як теорема Піфагора застосовна тільки до прямокутних трикутників.у прямокутних трикутниках один з трьох кутів завжди дорівнює 90 градусам.
    • Прямий кут в прямокутному трикутнику позначається значком у вигляді квадрата, а не у вигляді кривої, яка позначає непрямі кути.
  2. Позначте сторони трикутника. катети позначте як «А» і «b» (катети — сторони, що перетинаються під прямим кутом), а гіпотенузу — як " с " (гіпотенуза — найбільша сторона прямокутного трикутника, що лежить навпроти прямого кута).
  3. Визначте, яку сторону трикутника потрібно знайти. Теорема Піфагора дозволяє знайти будь-яку сторону прямокутного трикутника (якщо відомі дві інші сторони). Визначте, яку сторону (a, b, c) потрібно знайти.
    • Наприклад, дана гіпотенуза, рівна 5, і дан катет, рівний 3. В цьому випадку необхідно знайти другий катет. Ми повернемося до цього прикладу пізніше.
    • Якщо дві інші сторони невідомі, необхідно знайти довжину однієї з невідомих сторін, щоб мати можливість застосувати теорему Піфагора. Для цього використовуйте основні тригонометричні функції (якщо вам дано значення одного з непрямих кутів).
  4. Підставте в формулу a2 + b2 = c2 дані вам значення (або знайдені вами значення).Пам'ятайте, що a і b — це катети, а с — гіпотенуза.
    • У нашому прикладі напишіть:32 + b2 = 52.
  5. Зведіть в квадрат кожну відому сторону.або ж залиште ступеня-ви можете звести числа в квадрат пізніше.
    • У нашому прикладі напишіть: 9 + b2 = 25.
  6. Відокремте невідому сторону на одній стороні рівняння.для цього перенесіть відомі значення на іншу сторону рівняння. Якщо ви знаходите гіпотенузу, то в теоремі Піфагора вона вже відокремлена на одній стороні рівняння (тому робити нічого не потрібно).
    • У нашому прикладі перенесіть 9 на праву сторону рівняння, щоб відокремити невідоме b2. Ви отримаєте b2 = 16.
  7. Витягніть квадратний корінь з обох частин рівняння. на даному етапі на одній стороні рівняння присутній невідоме (в квадраті), а на іншій стороні — вільний член (число).
    • У нашому прикладі b2 = 16. Витягніть квадратний корінь з обох частин рівняння і отримаєте b = 4. Таким чином, другий катет дорівнює4.
  8. Використовуйте теорему Піфагора в повсякденному житті, так як її можна застосовувати у великій кількості практичних ситуацій. для цього Навчіться розпізнавати прямокутні трикутники в повсякденному житті - в будь-якій ситуації, в якій два предмети (або лінії) перетинаються під прямим кутом, а третій предмет (або лінія) з'єднує (по діагоналі) верхівки двох перших предметів( або ліній), ви можете використовувати теорему Піфагора, щоб знайти невідому сторону (якщо дві інші сторони відомі).
    • Приклад: дана сходи, притулена до будівлі. Нижня частина сходів знаходиться в 5 метрах від основи стіни. Верхня частина сходів знаходиться в 20 метрах від землі (вгору по стіні). Яка довжина сходів?
      • "в 5 метрах від основи стіни «означає, що а = 5;» знаходиться в 20 метрах від Землі" означає, що b = 20 (тобто вам дані два катети прямокутного трикутника, так як стіна будівлі і поверхня землі перетинаються під прямим кутом). Довжина сходів є довжина гіпотенузи, яка невідома.
        • A² + b² = c²
        • (5)² + (20)² = c²
        • 25 + 400 = c²
        • 425 = c²
        • С = √425
        • С = 20,6. Таким чином, приблизна довжина сходів дорівнює 20,6 метрів.

Метод2 З 2:
Обчислення відстані між двома точками на координатній площині

  1. Виберіть дві точки на координатній площині.за теоремою Піфагора можна обчислити довжину відрізка, що з'єднує дві точки на координатній прямій. Для цього необхідно знати координати (х,у) кожної точки.
    • Щоб знайти відстань між двома точками, ви будете розглядати точки в якості вершин трикутника, що не прилеглих до прямого кута прямокутного трикутника. Таким чином, ви зможете легко знайти катети трикутника, а потім обчислити гіпотенузу, яка дорівнює відстані між двома точками.
  2. Нанесіть точки на координатну площину. відкладіть координати (х, у), де координата «х» відкладається по горизонтальній осі, а «у» — по вертикальній. Ви можете знайти відстань між точками без побудови графіка, але графік дозволяє візуально представити процес ваших обчислень.
  3. Знайдіть катети трикутника. ви можете зробити це, вимірявши довжину катетів безпосередньо на графіку або за допомогою формул: |x1 - x2| для обчислення довжини горизонтального катета, і |y1 - y2| для обчислення довжини вертикального катета, де (x1,y1) – координати першої точки, А (x2,y2) – координати другої точки.
    • Приклад: дані точки: а(6,1) і в (3,5). Довжина горизонтального катета:
      • |x1 - x2|
      • |3 - 6|
      • | -3 | =3
    • Довжини вертикального катета:
      • |y1 - y2|
      • |1 - 5|
      • | -4 | =4
    • Таким чином, в прямокутному трикутнику а = 3 і b = 4.
  4. Використовуйте теорему Піфагора для знаходження гіпотенузи. відстань між двома точками дорівнює гіпотенузі трикутника, дві сторони якого ви тільки що знайшли. Використовуйте теорему Піфагора, щоб знайти гіпотенузу, підставивши в формулу знайдені значення катетів (a і b).
    • У нашому прикладі а = 3 і b = 4. Гіпотенуза обчислюється наступним чином:
      • (3)²+(4)²= c²
        c= √(9+16)
        c= √(25)
        c= 5. Відстань між точками а(6,1) і в (3,5) дорівнює 5.

Поради

  • Гіпотенуза завжди:
    • Лежить навпроти прямого кута;
    • Є найдовшою стороною прямокутного трикутника;
    • Позначається як " с " в теоремі Піфагора;
  • √(х) означає "Квадратний корінь з х".
  • Не забувайте перевіряти відповідь. Якщо відповідь здається неправильним, виконайте обчислення знову.
  • Ще один момент-найдовша сторона лежить навпроти найбільшого кута, а найкоротша сторона — навпроти найменшого кута.
  • Вивчіть числа піфагорової трійки, що утворюють сторони прямокутного трикутника. Найпримітивніша піфагорова трійка - це 3, 4, 5. Так, знаючи довжину двох сторін, третю шукати не доведеться.
    • Пам'ятайте, гіпотенуза-завжди найдовша сторона.
  • Якщо дано звичайний трикутник (а не прямокутний), то потрібно більше інформації, ніж просто довжини двох сторін.
  • Графіки є наочним способом нанесення позначень а, b і С.якщо ви вирішуєте задачу, то в першу чергу побудуйте графік.
  • Якщо дана довжина тільки однієї сторони, то теорему Піфагора застосовувати не можна. Спробуйте використовувати тригонометрію (sin, cos, tan).
  • Якщо мова йде про завдання з якогось сюжету, можна сміливо припустити, що дерева, стовпи, стіни і так далі утворюють прямий кут з землею, якщо не вказано інше.

Ще почитати: